About

About the Website's Creation



Using the Website



Bibliography


3Blue1Brown. (2017). Essence of calculus [Video playlist]. YouTube https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr

BotPenguin. (n.d.). The vanishing gradient problem. BotPenguin. https://botpenguin.com/glossary/vanishing-gradient-problem

BotPenguin. (n.d.). What is softmax? BotPenguin. https://botpenguin.com/glossary/softmax-function

Calc Workshop. (n.d.). Chain rule tutorial. Calc Workshop. https://calcworkshop.com/derivatives/chain-rule/

cmdlinetips. (2021). Linear separability in machine learning. cmdlinetips. https://cmdlinetips.com/category/data-science/

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Jayesh Bapu Ahire. (2020). The XOR problem in machine learning. https://dev.to/jbahire/demystifying-the-xor-problem-1blk





Massachusetts Institute of Technology. (2020). Introduction to deep learning [Course materials]. MIT OpenCourseWare. https://ocw.mit.edu/courses/6-s191-introduction-to-deep-learning-january-iap-2020/

Massachusetts Institute of Technology. (n.d.). Learning in deep neural networks. MIT OpenCourseWare. https://ocw.mit.edu/courses/res-9-008-brain-and-cognitive-sciences-computational-tutorials/pages/4-learning-in-deep-neural-networks/


Mazur, M. (2024, February 23). A step by step backpropagation example. Matt Mazur. https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

Neptune.ai. (2022, July 21). A comprehensive guide to the backpropagation algorithm in neural networks. Neptune.ai. https://neptune.ai/blog/backpropagation-algorithm-in-neural-networks-guide

Ng, A. (2022). Machine learning specialization [Online course]. Coursera. https://www.coursera.org/specializations/machine-learning-introduction

Ng, A. (n.d.). CS229: Machine learning. Stanford University. https://cs229.stanford.edu/

Nielsen, M. (n.d.). How the backpropagation algorithm works. Neural Networks and Deep Learning. http://neuralnetworksanddeeplearning.com/chap2.html

Nielsen, M. (n.d.). Neural networks and deep learning. http://neuralnetworksanddeeplearning.com/

Prince, S. J. D. (n.d.). Understanding deep learning. https://udlbook.github.io/udlbook/

Professor Dave Explains. (n.d.). Chain rule explanation [Video]. YouTube. https://www.youtube.com/watch?v=_x1nCg2LfuA

Professor Dave Explains. (n.d.). Calculus video series [Video playlist]. YouTube. https://www.youtube.com/@ProfessorDaveExplains

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386-408.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536.

Sora. (2025). AI-generated neuron diagram and cost function visualizations. OpenAI Sora.

Sora. (2025). Neural network architecture definitions and parallel processing concepts. OpenAI Sora.

Trefor Bazett. (n.d.). The gradient vector [Video]. YouTube. https://www.youtube.com/watch?v=QQPz3eXXgQI

Wikipedia. (2008). Newton's law of universal gravitation. Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/wiki/Newton%27s_law_of_universal_gravitation

Wikipedia. (2025). Frank Rosenblatt. Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/wiki/Frank_Rosenblatt